Bioteknologi
BIOTEKNOLOGI
Secara tidak sadar kita telah mengkategorikan tanaman-tanaman hasil pemuliaan tradisional padi, jagung, dan tebu, tadi sebagai tanaman yang bersifat alamiah, padahal penampilan fenotif maupun genotif tanaman-tanaman tersebut sudah jauh berbeda dibandingkan dengan kerabat alaminya yang asli yang tumbuh di alam bebas dan lebih mirip sebagai gulma atau malah tanaman kerabat alaminya tersebut sudah punah.
Proses pemindahan gen pada pemuliaan tradisional dilakukan melalui proses penyerbukan dengan perantaraan angin maupun bantuan serangga penyerbuk. Proses penyerbukan ini sering kali melibatkan bantuan manusia, misalnya melalui penyerbukan dengan cara memindahkan serbuk sari tanaman yang satu ke ujung putik tanaman lainnya.
Pada proses penyerbukan dengan bantuan manusia ini, tidak jarang jumlah kromosom (pembawa sifat) pada serbuk sari tersebut harus disesuaikan terlebih dahulu oleh larutan pengganda kromosom seperti colchisine sehingga serbuk sari menjadi lebih kompatibel dengan tanaman betina melalui kepala putiknya. Upaya ini terus dilakukan secara berlanjut dalam bentuk penyelamatan embrio (embrio rescue) sehingga hibrida dapat bertahan (survive) dan tumbuh menjadi tanaman dewasa.
Pemuliaan tradisional telah banyak membantu meningkatkan produktivitas pertanian dalam kurun waktu 50 tahun terakhir. Data FAO tahun 1992 menunjukkan adanya peningkatan hasil biji-bijian (grain) dari rata-rata 1.1 ton per hektar pada tahun 1950 menjadi 2.8 ton per hektar pada tahun 1992. Namun karena jumlah penduduk masih jauh lebih besar dibandingkan dengan produksi pangan, peningkatan hasil pangan melalui proses pemuliaan ini masih terus dikembangkan.
Ahli demografi dari Perserikatan Bangsa Bangsa menyatakan jumlah penduduk dunia saat ini mencapai enam milyar orang, atau jumlahnya dua kali lipat dari jumlah penduduk 50 tahun yang lalu. Diperkirakan populasi dunia akan mencapai sembilan milyar pada 50 tahun mendatang (Population Division, 1999). Untuk mencukupi kebutuhan pangan penduduk yang populasinya terus bertambah dengan pesat ini, diperlukan lahan pertanian yang luas. Sementara itu ketersedian lahan untuk pertanian semakin lama semakin berkurang karena peruntukkannya banyak yang diubah menjadi lahan perumahan dan industri.
Oleh karena itu, diperlukan terobosan-terobosan di bidang teknologi pertanian untuk meningkatkan produktivitas hasil pertanian per unit lahan. Seperti diyakini para pakar, rekayasa genetika merupakan salah satu teknologi pertanian yang berpeluang dapat me-ningkatkan produktivitas pertanian (Swa-minathan, 1999, McGloughlin, 1999). Teknologi ini telah berkembang pesat selama kurun waktu lima belas tahun terakhir ini.
Prinsip rekayasa genetika sama dengan pemuliaan tanaman, yaitu memperbaiki sifat-sifat tanaman dengan menambahkan sifat-sifat ketahanan terhadap cekaman mahluk hidup pengganggu maupun cekaman lingkungan yang kurang menguntungkan serta memperbaiki kualitas nutrisi makanan. Perbedaan rekayasa genetika dengan pemuliaan tradisional adalah kemampuan rekayasa genetika dalam memanfaatkan gen-gen yang tidak dapat dipergunakan secara maksimal pada pemuliaan tradisional karena banyak gen yang terhalang saat penyerbukan.
Rekayasa genetika adalah kelanjutan dari pemuliaan secara tradisional. Tidak seperti halnya pemuliaan tanaman secara tradisional yang menggabungkan seluruh komponen materi genetika dari dua tanaman yang disilangkan, rekayas genetika memungkinkan pemindahan satu atau beberapa gen yang dikehendaki dari satu tanaman ke tanaman lain.
Pada pemuliaan tradisional diperlukan sedikitnya lima generasi penyilangan balik (backcross) untuk menghilangkan gen-gen yang tidak dikehendaki dan mungkin bersifat merugikan karena bertaut dengan gen yang diinginkan pada proses fertilisasi, sehingga pemuliaan tanaman secar tradisional memerlukan waktu yang lama.
Selain itu, pemuliaan tanaman tradisional memiliki keterbatasan dalam menggunakan sumber-sumber gen yaitu hanya sebatas menggunakan tananam yang bisa disilangkan saja. Misalnya, pemindahan gen yng toleran terhadap air asin dari tanaman manggrove famili Rhizophoraceae pada tanaman padi tidak mungkin dilakukan melalui proses penyilangan (Swaminathan, 1999).
Demikian halnya dengan pemindahan gen untuk provitamin A pada endosperma biji padi yang tidak mungkin dapat dilakukan secara tradisional. Keunggulan rekayasa genetika adalah mampu memindahkan materi genetika dari sumber yang sangat beragam dengan ketepatan tinggi dan terkontrol dalam waktu yang lebih singkat. Melalui proses rekayasa genetika ini, telah berhasil dikembangkan tanaman yang tahan terhadap organisme pengganggu seperti serangga, penyakit dan gulma yang sangat merugikan tanaman (James, 1998). Departemen Pertanian Cina telah melakukan penelitian dan pengujian lapangan terhadap 47 spesies tanaman transgenik dan 103 macam genetik (Zhang, 1999).
Di negara kita, LIPI telah berhasil memasukkan gen bioteknologi (Bt) pada padi sehingga padi tersebut menjadi tahan hama dan serangga. Rekayasa genetika juga membawa perbaikan kualitas seperti meningkatnya kandungan provitamin A padi (Ye dan kawan-kawan, 2000), menurunya kadar lemak jenuh pada minyak nabati (Lehrer, 1999) dan masih banyak lagi.
Penelitian di Universitas Texas A & M menunjukkan bahwa jagung Bt memiliki kadar racun mycotoxin (penyebab kanker) yang sangat rendah dibanding jagung biasa, karena pada jagung Bt tidak terdapat luka gigitan serangga yang biasanya menjadi tempat masuknya jamur penghasil mycotoxin (Benedict dkk, 1998).
Tanaman-tanaman produk rekayasa genetika (transgenik) kini telah ditanam secara luas di dunia. Menurut penelitian organisasi nirlaba ISAAA (International Service for the Acquistion of Agri-Biotech Aplication), penanaman produk rekayasa genetika merupkan satu-satunya teknologi pertanian digunakan secara luas oleh petani sehingga mengalami peningkatan yang pesat setiap tahunnya. Dengan tanaman hasil rekayasa genetika ini, para petani menjadi lebih puas terhadap produk pertanian. Produk ini telah berhasil memberikan berbagai keuntungan kepada petani misalnya memberikan hasil yang meningkat, memudahkan budidaya pertanian, serta lebih ramah lingkungan karena berkurangnya penggunaan bahan-bahan pestisida kimia. Total luas area tanaman transgenik untuk tahun 2001 adalah 52,6 juta hektar (James, 2001).
Analisa resiko tanaman produk rekayasa genetika
Contoh lain misalnya ketahanan (survival) bakteri tanah Agrobacterium tumefasciens dengan mengintegrasikan sebagian genomnya pada tanaman, seperti pada pembuatan tanaman transgenik saat ini. Dengan demikian, proses perpindahan DNA pada tanaman transgenik tidak dengan sendirinya menimbulkan resiko namun yang dihasilkan dari ekspresi gen intraduksi-lah yang harus dikaji resikonya.
Berikut ini adalah petikan-petikan analisa resiko yang berasal publikasi The Royal Society of New Zealand (Conner, 1997) dan dari sumber-sumbe:
Mungkinkah tanaman transgenik berubah menjadi gulma?
Mungkinkah gen baru dipindahkan kepada gulma dan menjadi gulma yang super?
Penanaman tanaman transgenik yang tahan terhadap herbisida mendatangkan kekhawatiran akan berpindahnya karakter tahan terhadap herbisida tersebut pada kerabat liarnya yang merupakan gulma sehingga tanaman tersebut dikhawatirkan menjadi tanaman gulma yang super. Kekhawatiran ini terutama mungkin terjadi jika tanaman tersebut ditempatkan di tempat keanekaragaman hayati (center of genetic diversity) tanaman transgenik tersebut. Tanaman-tanaman budidaya yang ditanam secara luas di Indonesia dan memiliki nilai tinggi berasal dari introduksi dari negara lain, seperti jagung yang berasal dari Meksiko, kedelai dari Cina, kapas dari India, kelapa sawit dari Papua Nugini, dan karet dari Brazil.
Perpindahan materi genetik dari tanaman budidaya ke tanaman kerabat liarnya telah terjadi di tempat yang merupakan pusat keanekaragaman hayati tanaman transgenik itu. Isu ini perlu diperhatikan dan dicarikan jalan keluarnya. Dapat dikatakan bahwa isu ini tidak unik pada tanaman transgenik karena tanaman transgenik yang tahan herbisida tersebut bukan saja merupakan produk rekayasa genetika tetapi juga banyak tanaman tahan herbisida yang merupakan hasil pemuliaan tanaman itu sendiri.
Apakah jagung Bt membahayakan kupu-kupu Monarch
Apakah tanaman transgenik berbahaya bila dikonsumsi ?
Tanaman transgenik dapat berbahaya atau bermanfaat bagi manusia dan lingkungan tergantung tujuan pengembangannya dan tidak terlepas juga dari sifat gen yang diintroduksi. Apabila gen introduksi menghasilkan racun, maka tanaman transgenik dengan sendirinya akan menjadi racun. Kelebihan dari proses rekayasa genetika tanaman transgenik dibandingkan dengan pemuliaan tanaman secara tradisional yaitu dalam tanaman transgenik, gen yang dipindahkan dapat diketahui dengan persis dan dapat diikuti "perjalanannya".
Analisa toksisitas pada tanaman transgenik biasa dilakukan dengan menggunakan metoda acute gavage serta feeding studies pada binatang-binatang percobaan untuk menentukan apakah protein baru bersifat toksik atau tidak (Hamond dkk, 1996).
Apakah produk rekayasa genetik (L-tryptophan) membunuh manusia ?
Penyakit EMS (Eosinophilia-Myalgia Syndrome) yang menyebabkan kematian pada manusia ternyata disebabkan oleh konsumsi makanan suplemen yang mengandung L-tryptophan (US FDA 1990). L-tryptophan dihasilkan dari hasil fermentasi bakteri Bacillus amyloliquefaciens. Untuk meningkatkan produksi asam amino ini, perusahaan pembuatnya yaitu Showa Denko merekayasa genetik bakteri Bacillus amyloliquefaciens. Pada saat bersamaan perusahaan itu juga mereduksi penggunaan karbon aktif yang diperlukan untuk menyaring kontaminan dan impuriti yang biasa terdapat pada setiap proses fermentasi sebanyak 50%.
Penyakit EMS (Eosinophilia-Myalgia Syndrome) [tryptophan] yang terjadi diakibatkan oleh proses penyaringan yang tidak sempurna. (Mayeno dkk, 1990 dan Hill dkk, 1993). Penyakit ini bukan disebabkan karena penggunaan transgenik bakteri.
Alergi terhadap makanan diartikan sebagai reaksi imunologi (kekebalan) tubuh, yang mempunyai dampak merugikan kesehatan, terhadap antigen yang terdapat dalam makanan (Lehrer 1999). Lebih dari 90% kasus alergi terhadap makanan disebabkan karena makanan-makanan yang termasuk dalam "kelompok delapan" yaitu telur, ikan, makanan laut, susu, kacang tanah, kacang kedelai, pohon penghasil kacang (tree nuts), dan gandum (Taylor dan Lehrer 1996).
Jika demikian, selanjutnya dilakukan pengujian-pengujian imunologis seperti solid phase immunoassay dan tes skin prick. Seandainya sumber gen tersebut bukan berasal dari "kelompok delapan", susunan asam amino protein introduksi kemudian dibandingkan dengan protein-protein yang telah diketahui bersifat sebagai alergen yang terdapat dalam databaseGenBank, EMBL, SwisProt, PIR, untuk dilihat kesamaan susunan asam aminonya. Selanjutnya, stabilitas protein introduksi dianalisa sesuai dengan sifat allergen, karena juga allergen diketahui bersifat stabil pada suhu tinggi dan juga stabil pada sistem pencernaan. Beberapa contoh evaluasi alergenisitas tanaman hasil rekayasa genetika adalah sebagai berikut:
- Kedelai yang mengandung gen kacang Brazil (Nordlee dkk).
Dalam upaya memperkaya protein kedelai dengan asam-asam amino yang mengandung gugus sulfur (seperti metionin), gen kacang Brazil yang kaya akan gugus sulfur telah dimasukkan ke dalam salah satu jenis kacang kedelai. Seperti diketahui baik kedelai maupun kacang Brazil, merupakan bagian dari " kelompok delapan" (tree nuts) yang dapat menyebabkan reaksi alergi. Evaluasi alergenisitas terhadap kedelai transgenik dengan gen dari kacang Brazil meningkatkan potensi alergenisitas kedelai tersebut. Dengan demikian, pengembangan kedelai dengan gen dari kacang Brazil kemudian dihentikan (Conner 1997, Lehrer 1999).
- Meningkatkan kadar asam oleat (oleic acid) pada kacang kedelai. (Lehrer dan Reese, 1998).
Kedelai ini direkayasa genetiknya kadar asam oleiknya meningkat sehingga lemak yang terkandung dalam kacang kedelai tersebut menjadi lebih sehat. Proses rekayasa genetika yang dilakukan pada kacang kedelai ini adalah dengan meningkatkan kadar beberapa macam protein sehingga dikhawatirkan dapat pula meningkatkan potensi alergenitas pada kacang kedelai tersebut. Evaluasi alergenisitas kemudian dilakukan seperti halnya pada evaluasi kedelai dengan kacang Brazil di atas. Hasilnya terbukti bahwa kacang kedelai dengan kadar asam oleat tinggi tidak memiliki potensi alergenisitas yang lebih tinggi dibandingkan dengan kacang kedelai biasa.
Dari contoh evaluasi alergenitas di atas dapat disimpulkan bahwa kemungkinan diintroduksinya alergen pada proses rekayasa genetika sudah dapat diprediksi dengan metoda deteksi yang memang sudah tersedia untuk mengevaluasi kemungkinan-kemungkinan introduksi ini. Penelitian-penelitian selama ini membuktikan bahwa penambahan protein pada makanan yang bukan berasal dari kelompok delapan di atas, yang tidak memiliki kesamaan susunan asam amino dengan protein alergen yang ada di database serta protein pada sumber makanan tersebut mudah terurai (tidak stabil) pada pemanasan maupun pada proses pencernaan, tidak membuat tanaman transgenik tersebit menjadi lebih bersifat allergen dibandingkan dengan tanaman bukan transgenik.
Selain itu, dibandingkan dengan proses pemuliaan biasa, gen yang diintroduksi pada tanaman hasil rekayasa genetika, sudah diketahui persis susunan DNA-nya maupun protein hasil ekspresinya, sehingga kemungkinan adanya allergen pada tanaman hasil rekayasa genetika sudah dapat diprediksi lebih dini. Misalnya, penelitian di Jepang menunjukkan dengan rekayasa genetika telah dimungkinkan adanya pengurangan kadar protein allergen tanaman padi. (Matsuda dkk, 1993).
PENUTUP